Skip Navigation Links.
🏠Home
Collapse 💻Apps💻Apps
🍵HTML Editor
🍵Unicode Symbols
Collapse 📂Topics📂Topics
Collapse 📄Data Analysis Expressions ...📄Data Analysis Expressions ...
Collapse 📄Complete List of DAX Fun...📄Complete List of DAX Fun...
📄ABS...
📄ACCRINT...
📄ACCRINTM...
📄ACOS...
📄ACOSH...
📄ACOT...
📄ACOTH...
📄ADDCOLUMNS...
📄Using DAX to split colum...
Collapse 📄MS Office...📄MS Office...
📄MS Access...
Collapse 📄MS Excel...📄MS Excel...
Collapse 📄Ribbon...📄Ribbon...
Collapse 📄Home...📄Home...
📄Alignment...
📄Cells...
📄Clipboard...
📄Editing...
📄Font...
📄Number...
📄Styles...
Collapse 📄Insert...📄Insert...
📄Charts...
📄Illustrations...
📄Tables...
Collapse 📄Office Scripts...📄Office Scripts...
📄VBA to TypeScript: A S...
Collapse 📄Power BI...📄Power BI...
Collapse 📄Get Data...📄Get Data...
📄Get Data from Files...
📄View any visual as table...
Collapse 📄Power Query / M Language...📄Power Query / M Language...
📄Entering Data without Da...
📄Data Source Settings...
Collapse 📄Practice Datasets...📄Practice Datasets...
📄Kaggle Datasets...
Collapse 📄SQL Datasets...📄SQL Datasets...
📄Adventure Works (SQL S...
📄Star Bakery (MySQL Ser...
📄Star Corp (SQL Server)...
Collapse 📄Python...📄Python...
📄Fill missing values in M...
📄List of Machine Learning...
📄Python for MS Excel...
📄Seasonal Autoregressive ...
📄Working with Random Valu...
Collapse 📹Video Tutorials📹Video Tutorials
🎬Python Lesson 002: Communi...
🎬Python Lession 001: Introd...
🎬Power Pivot Advanced Conce...
🎬SQL: Pivot and Unpivot Dat...
🎬Power BI: Creating Busines...
🎬Analysing Data in SQL Serv...
🎬Time Intelligence in Power...
🎬SQL Magic: Auto-Generating...
🎬Using Gemini for SQL Data ...
🎬Using Dropdown Lists Effec...
🎬Build a Stunning Animated ...
🎬Power BI: Creating and Int...
🎬Advanced Power BI Realtime...
🎬Real time Monitoring with ...
🎬Creating and Using Flow Ma...
🎬How to create terrain, add...
🎬Game Design Tutorial for B...
🎬Dashboard with Relational ...
🎬Power Pivot and Data Model...
🎬Selecting Project using Pr...
🎬Two Ways to Use Custom SQL...
🎬Diversity, Equity, and Inc...
🎬Complete Guide to Using Dr...
🎬Gantt Chart in Power BI: C...
🎬Monitoring Progress Using ...
🎬Creating a Dashboard of Sa...
🎬Indigeno Technologies - Pa...
🎬Creating and Publishing We...
🎬Make Your Data Grow: Tree ...
🎬Power BI: Adding Historica...
🎬We asked an AI to create a...
🎬Power BI: Staff Engagement...
🎬Using Unicode Symbols in E...
🎬Power BI: Timesheet Analys...
🎬Time Machine for Your Data...
🎬Azure Data Studio - Comple...
🎬Power BI: Creating a Stunn...
🎬Power BI: Project Payback,...
🎬Power BI: Complete Realtim...
🎬Power BI: DAX Query View f...
🎬Build Your Own Excel Toolb...
🎬Data Science Programming: ...
🎬Power BI: Manage and Track...
🎬MS Excel: Using Images in ...
🎬MS Excel: Complete Guide t...
🎬Power BI: Creating Dashboa...
🎬Power BI: Using Latest Pre...
🎬Power BI: Performing Compa...
🎬Power BI: Creating Dashboa...
🎬Python: Forecasting with S...
🎬Power BI: Creating a Dice ...
🎬MS Excel: Creating a Dynam...
🎬Power BI: Create stunningl...
🎬MS Excel: Data Visualizati...
🎬Power BI: Assets Managemen...
🎬Power BI: Using Copilot in...
🎬Power BI: How to Create a ...
🎬MS Excel: Complete Guide t...
🎬Power BI: Easily Pivoting ...
🎬Power BI: How to Create a ...
🎬MS Excel: Using Python Rea...
🎬MS Excel: Realtime/Live Da...
🎬Power BI: Creating Paginat...
🎬Power BI: Exploring PBI On...
🎬MS Excel: Mastering MS Exc...
🎬MS Excel: Performing Non-L...
🎬MS Excel: How to add lates...
🎬Power BI: Performing PESTL...
🎬Power BI: Creating an Exot...
🎬Python: Resizing and Conve...
🎬Power BI:The Clock - Episo...
🎬MS Power Point: The Clock ...
🎬Looker Studio: Setting up ...
🎬HTML: Complete Course for ...
🎬Power BI: Creating a Power...
🎬MS Excel: Best Way to Crea...
🎬Power BI: Setting up Repor...
🎬Power BI: Real-time Data R...
🎬MS Excel: Mastering Excel ...
🎬SQL: Creating Realtime Liv...
🎬SQL: SQL Server Reporting ...
🎬Power BI: Data Modeling an...
🎬MS Excel: Data Modeling an...
🎬Python: Mastering NumPy Li...
🎬Power BI: Automating Data ...
🎬Power BI: How to Build a P...
🎬Power BI: Displaying Realt...
🎬Power BI: Unlocking Insigh...
🎬Power BI: How to Create a ...
🎬Power BI: Comparing Variou...
🎬Power BI: Animate Your Vis...
🎬MS Excel: Using Formulas l...
🎬Power BI: Using Folders as...
🎬Power BI: Using Folders as...
🎬Python: Uploading Files Di...
🎬Power BI: Creating Stunnin...
🎬Power BI: Integrating Pict...
🎬Power BI: Crafting Dynamic...
🎬Power BI: Dealing with Err...
🎬Power BI: Creating Dynamic...
🎬MS Excel: Calculating, Com...
🎬Power BI: Exploratory Data...
🎬Power BI: Create an Intera...
🎬Python: Creating Polynomia...
🎬Looker Studio: Creating Dy...
🎬Google Charts: Using Googl...
🎬Looker Studio: Understandi...
🎬Python: Mastering Data Vis...
🎬Power BI: Realtime Simulat...
🎬Power BI: Connecting to an...
🎬Python: Performing basic S...
🎬MS Excel: Simplifying Comp...
🎬Power BI: How to Create Hi...
🎬MS Excel: How to Use Calcu...
🎬Power BI: Using Small Mult...
🎬Power BI: Performing Finan...
🎬Power BI: Displaying SQL D...
🎬Power BI: Displaying Audit...
🎬Power BI: Loading Data int...
🎬Power BI: Using SQL Query ...
🎬Power BI: Visualizing Basi...
🎬MS Excel: Create a Smart, ...
🎬Power BI: Realtime Plant S...
🎬Power BI: Analyzing Season...
🎬Power BI: Creating your fi...
🎬Power BI: Creating Paginat...
🎬Power BI: Creating a Key P...
🎬Power BI: Creating Data So...
🎬Power BI: Setting up Power...
🎬Creating and Setting up a ...
🎬Power BI: Creating Pareto ...
🎬Power BI: Realtime Call Ce...
🎬Power BI: Creating a Proje...
🎬Power BI: Displaying Live ...
🎬Power BI: Using Conditiona...
🎬MS Excel: How to Create Re...
🎬Power BI: Realtime Sales S...
🎬Power BI: Displaying Realt...
🎬MS Excel: Using Excel Slic...
🎬Tableau: Tutorial for Begi...
🎬Power BI: How to Use Bookm...
🎬MS Access: How to Create R...
🎬MS Excel: Using What If An...
🎬Power BI: Create a YouTube...
🎬Power BI: Correlation Anal...
🎬Power BI: Analyzing Murder...
🎬Power BI: Manage and Monit...
🎬MS Excel: Creating an Anim...
🎬MS Excel: Creating 3D Maps...
🎬Power BI: Analyzing Wareho...
🎬MS Excel: How to add seria...
🎬Power BI: Mastering Market...
🎬MS Excel: What lies beneat...
🎬MS Excel/Power BI: Unpivot...
🎬Power BI: Exploring Defaul...
🎬MS Excel: Using the Break-...
🎬MS Excel: Predicting Sales...
🎬Power BI: Market Basket An...
🎬MS Excel: Creating a Bell ...
🎬Power BI: Creating a Dimen...
🎬Looker Studio: Creating a ...
🎬R: Creating Your First Pie...
🎬MS Excel: Conditional Form...
🎬Power BI: Analyzing human ...
🎬Python: Unleashing the Pow...
🎬Excel: Mapping, Grouping a...
🎬Power BI: Forecasting Data...
🎬Power BI: Grouping Data in...
🎬JavaScript: Using the if-e...
🎬Power BI: Connecting to th...
🎬JavaScript: Performing Mat...
🎬Power BI: Analyzing Bank L...
🎬MS Excel: Pivot... Pivot.....
🎬JavaScript: How to use onC...
🎬Power BI: Using Sankey Dia...
🎬Power BI: Multi Page Power...
🎬JavaScript: How to use onL...
🎬JavaScript: How to get the...
🎬Power BI: Crimes in Los An...
🎬Power BI: Crimes in Los An...
🎬Excel: Using the Fill Feat...
🎬Power BI: Drill-through Re...
🎬Power BI: Using DAX (Data ...
🎬Power BI: Using Smart Narr...
🎬Power BI: Bank Failure in ...
🎬Python: Predicting absente...
🎬Power BI: Dashboards with ...
🎬Power BI: Team and Product...
🎬Excel: Lookup Functions, V...
🎬Power BI: Artificial Intel...
🎬Power BI: Drill Down Repor...
🎬Python: Creating a GUI bas...
🎬Power BI: Visualizing Stoc...
🎬Python: Expected Returns (...
🎬Power BI: Decomposition Tr...
🎬Power BI: Sales and Profit...
🎬Python: Why you should not...
🎬Python: How to save, reloa...
🎬Power BI: Dimensional Mode...
🎬Python: How to classify da...
🎬Python: Machine Learning, ...
🎬Python: Web Scraping using...
🎬Animate: Classic Tween in ...
🎬Python: Support Vector Mac...
🎬Python: How to perform loo...
🎬Unity3d: How to create ter...
🎬Python: How to create and ...
🎬Python: How to work with a...
🎬Python: How to work with p...
🎬Python: How to work with S...
🎬SQL: How to create databas...
🎬Python: Data Scraping from...
🎬MS Excel: Pivot Tables, Pi...
🎬Python: How to use World B...
🎬MS Excel: How to use COUPD...
🎬Power BI: How to install P...
🎬Python: Easiest way to dow...
🎬MS Excel: How to use AMORD...
🎬MS Excel: How to use ACCRI...
🎬Python: Calculating varian...
🎬MS Excel: How to calculate...
🎬Python: How to calculate a...
🎬MS Excel: How to calculate...
🎬Python: How to calculate a...
🎬MS Excel: How to calculate...
🎬Python: How to calculate a...
🎬MS Excel: How to calculate...

🎬Power BI: Unlocking Insights - Analyzing Credit Sales Data Using Power BI

Welcome to another Power BI tutorial! In this tutorial, we`ll dive into the world of analyzing and presenting credit sales data, specifically focusing on transactions with doubtful or bad debts.

We`ve got a robust dataset comprising over 14,000 credit sales transactions. This data includes essential details such as transaction ID, date, sales amount, days past due, and debt classification. Additionally, we`ve provided a second sheet that defines the various debt classifications and a third sheet that maps transaction IDs to store names.

Our journey begins by importing the Excel file using Power BI`s "Get Data" feature. In the Navigator window, select all the tables and press "Load," allowing the data to load. While most of the time, data loads correctly, sometimes issues may arise. In such cases, you can rectify them in the Query Editor by clicking "Use First Row as Header" for the affected tables.

Once your tables have the correct headers, click "Close and Apply," and you`ll have all the fields with proper names. Next, head to the Model view to establish table relationships. Fortunately, Power BI often creates these relationships automatically. However, if they`re missing, you can manually create a relationship between the Transactions and Stores tables based on transaction ID.

Now, switch to the Table view and open the Transactions table. Select the Classification column and create a new data group for all doubtful debt stages. This simplifies the classification, reducing it to three categories instead of five. This is how you can group data in Table view.

To calculate late charges, create a new column. Use the IF formula to assign zero charges to regular debts and calculate charges based on credit sales and days past due for non-regular debts. Now, you`re ready to proceed.

Before creating visualizations, format the amounts properly, using comma-separated numbers without decimal points. Now, switch to the Report view. Temporarily hide the filters and add a slicer for the transaction date, including the quarter field and convert it into a drop-down list with visual borders.

Further enhance your report by adding a text box visual in the top left corner with an appropriate title. Make it stand out by increasing the font size, turning on visual borders, and setting the font to bold.

Now, introduce a table visual to your dashboard, incorporating the Classification, Total, and Late Charges fields. Duplicate this table visual, placing it below the original, and change the Classification Group field to the Classification field. Both visuals can now operate independently without affecting each other.

To maintain this independence, disable interactions between them. With this setup, you can view bad debts during the specified period.

Rename your title to "Bad Debts" for clarity. Add a column chart, using the Store field from the Stores table on the x-axis and credit sales on the y-axis. Duplicate this chart and change it to a 100% stacked column chart.

Expand your dashboard with a scatter chart visual, plotting credit sales on the x-axis and late charges on the y-axis. Don`t summarize either field and turn on visual borders. Optionally, add the Classification field to the legend area and adjust its placement for readability.

Fine-tune the scatter chart for the best appearance. Finally, introduce a histogram, which you can import from an external file. Add it to your dashboard and configure it using the credit sales field for both values and frequency. Adjust the bin size and enable visual borders.

Your dashboard is now complete! Thank you for watching our tutorial; we hope you found it helpful. Don`t forget to like and subscribe for more tutorials and updates.

#PowerBI #CreditSales #DataAnalysis #Tutorial #Excel #DebtClassification #Visualization #LateCharges #Dashboard #DataModeling #BusinessIntelligence #DataTransformation